
Detailed Implementation Guidelines for the
Interim Low Bit Rate Compression System

November 27, 1996

by

Austin Lan
(716) 253-5743

lana@kodak.com

 Joe Reitz
(716) 253-6599

reitz@kodak.com

Eastman Kodak Company
Commercial and Government Systems

1447 St. Paul Street
Rochester, NY  14653-7118



Page 0

1.0 Interim JPEG System Model

The Interim JPEG compression algorithm achieves very low bit rate compression using the scheme shown in
Figure 1.  Decimation of the original image is used to achieve bit rates beyond what JPEG can accomplish alone
due to the fixed 8x8 block size encoding structure (0.5-0.8 bits/pixel).  In this algorithm, the adverse effects of
downsampling (e.g. aliasing and blurring) are traded-off with JPEG artifacts (e.g. blocking) by adjusting the
relative compression contributions from each module.  The quality of the reconstructed image after JPEG
decompression and interpolation has been demonstrated to be competitive with several "state-of-the-art" low bit
rate compression algorithms.
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Figure 1:  System model for Interim JPEG compression.

1.1 Downsampling Model

Conceptual downsamping is performed using the model shown in Figure 2.  Note that all references to "x" refer to
the continuous spatial domain.  Hd(jΩ) represents the ideal downsampling filter that is applied to the digital data,
To is the old sampling period (assume To=1), T is the new sampling period, and R is the downsample ratio.  With
To=1, the new sampling period, T, is equal to the downsample ratio, R.  R is defined to be greater than one, so the
new sampling rate is lower than the original.

Hd jΩ( )
T = RTo

Hr jΩ( ) Haa jΩ( )

y nTo[ ]
yaa x( )

y nT[ ]

y x( )

Figure 2:  Downsampling model

Hd(jΩ) can conceptually be separated into two filters:  an ideal reconstruction filter for discrete-to-continuous-
spatial (D/C) conversion, and an ideal anti-aliasing filter.  The reconstruction filter converts the digital signal to a
continuous form, while the anti-aliasing filter prepares the continuous signal for resampling at a lower rate.  The
frequency responses of the two ideal filters are shown in Figure 3.
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Figure 3:  Frequency responses of the ideal downsampling filters.

The combined response, Hd(jΩ), is achieved by multiplying the reconstruction filter and anti-aliasing filter
frequency responses (To=1).  The resulting downsample filter performs both D/C conversion and anti-aliasing.
The impulse response of the downsample filter is the sinc function defined in the following equation:

hd x( ) = 1
R

sinc
1
R

x 
 
  

 
 =

sin
π
R

x 
 
  

 
 

πx − ∞ < x < ∞

The sampler shown in Figure 2 converts the continuous signal back to the digital domain, but at the new sampling
rate.   The sampling ratio, R, in this system can be any value greater than one, as opposed to discrete-time
techniques for changing the sampling rate, which limit the sampling ratio to integer values.

1.1.1 Practial Considerations for Downsampling

The ideal filter can only be approximated due to its infinite length.  The approximation is accomplished using a
window of finite length to truncate the ideal impulse response.  The window shape defines how abruptly the
truncation is performed.  This allows a trade-off between transition width and stopband attenuation of the
windowed filter frequency response.  The window to be used for downsampling is defined as follows:

wd ( x ) = cos (π x) flen( )
0

 
 
 

− flen 2 ≤ x ≤ flen 2
else

where, flen is the downsample filter length defined as:

flen = base ⋅ R
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base refers to the desired base length for the downsample filter.  This equation for filter length shows a
dependency on the downsample ratio.  This relationship gives the filter desirable properties which will be
discussed in Section 2.1.

The windowed downsample filter is found by applying the window to the ideal impulse response:

hdwind x( )= wd ( x ) × hd (x ) − ∞ < x < ∞

The ideal impulse response and the truncating window are illustrated in Figure 4.
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Figure 4:  Ideal downsample filter and truncating window.

1.2 Upsampling Model

Figure 5 shows the conceptual upsampling process.  Hr(jΩ) represents the ideal reconstruction filter that is used to
perform D/C conversion.  Once the signal is converted to the continuous domain, it is resampled with a new
sampling period, T.  The upsampling ratio, L, is defined to be greater than one, so the new sampling rate is higher
than the original, To (assume To=1).  The ideal frequency response is shown in Figure 6.

y nTo[ ] y nT[ ]
y x( )

Hr jΩ( )
T =

To

L

Figure 5:  Upsampling model.
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Figure 6:  Frequency response of the ideal upsampling filter.

The impulse response of the upsample filter is the sinc function defined in the following equation:

hr ( x ) = sinc( x) =
sin πx( )

πx − ∞ < x < ∞

1.2.1 Practical Considerations for Upsampling

Similar to the downsample case, the ideal upsample impulse response is truncated using a window in order to
achieve a practical filter.  The window to be used for upsampling is defined as follows:

wu ( x ) = cos2 (πx ) flen( )
0

 
 
 

− flen 2 ≤ x ≤ flen 2
else

where, flen is the desired filter length.  The windowed upsampling filter is found by applying the window to the
ideal impulse response:

huwind x( ) = wu ( x ) × hr (x ) − ∞ < x < ∞

The ideal impulse response and the truncating window are illustrated in Figure 7.
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Figure 7:  Ideal upsample filter and truncating window.

1.3 Frequency Response of Practical Filters
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The following figures show the combined frequency response of downsample and upsample filter pairs for all base
filter length combinations of 4 and 8.  The downsample and upsample ratios for these examples are both 2.0.  The
actual filter length for the downsample filter is the base filter length multipled by the downsample ratio.  The
reasoning behind this is described in Section 2.0.  The upsample filter length is the unmodified base length.  Since
the upsample filter in reality only influences the frequencies of the original signal in the interval [0, π/R], it is
displayed in downsampled units so that its cutoff matches the downsample filter.

In general, the figures show that the chosen windows and filter lengths provide a sharper cutoff on the
downsampling side, and a smoother response on the upsampling side.  The windows described in Sections 1.1.1
and 1.2.1 form a matched pair due to their shape in the frequency domain.  Gain from one window is matched with
attenuation from the other to create a moderately flat joint response.  The window choice for downsampling or
upsampling is somewhat arbitrary, but intuition points to placing the filter with a sharp transition on the
downsampling side to preserve as much of the original signal as possible.  Image quality evaluations have verified
this decision.
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Figure 8:  Downsample length 4; upsample length 4.
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Figure 9:  Downsample length 4; upsample length 8.
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Figure 10:  Downsample length 8; upsample length 4.
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Figure 11:  Downsample length 8; upsample length 8.

2.0 Filtering and Resampling Process

The downsample and upsample operations are simply convolutions using the kernels defined in Sections 1.1.1 and
1.2.1 followed by resampling.  In two dimensions, downsampling is accomplished by performing the one-
dimensional operation twice (e.g. downsample rows, then columns).  The second downsampling should be
performed on the intermediate result, which is the output from the first operation.  Upsampling for the decoder in
this system should reverse the processing order performed by the encoder (e.g. reconstruct columns first, then the
rows), although it should not have significant impact if the order is not reversed.  The choice of which dimension
(rows or columns) to process first for the downsampling process should be driven by software optimization issues.

The convolution operation in Figures 2 and 5 is actually performed in the continuous spatial domain, as opposed to
discrete-time convolution.  The result after the convolution, but before the sampler, is always a continuous
distribution of values.  The sampler returns the signal to the discrete-time domain.  The convolution and sampling
operations can be combined to achieve a reduction in complexity by performing the necessary convolution
calculations only at the locations that will be hit by the sampler.  The other values from the convolution operation
will never be used in later operations, so it is not necessary to consider them.

2.1 Details of the Downsampling Operation

The main input parameter into the downsampling module is the desired two-dimensional downsampling ratio for
the entire image.  This parameter is interpreted to mean the downsampled image is reduced in total size from the
original by a factor that is approximately equal to the desired ratio.  This ratio is only approximate since the ratio
should be modified so that the downsampled image will have integer dimensions that are multiples of 8.  If a
dimension is not a multiple of 8, then the JPEG module must pad the image, which creates coding inefficiencies.
The desired one-dimensional downsampling ratio that is applied to both the row and column dimensions is
calculated by taking the square root of the input two-dimensional ratio.  The actual one-dimensional
downsampling ratio is calculated from the downsampled image dimensions, which are constrained to be multiples
of 8 using the following equation:
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downDim = origDim
8∗ ratio

 
  

 
  ∗8

where, Dim is either the rows or the columns, and ratio is the desired one-dimensional downsampling ratio.  The
actual  downsampling ratio is then formed as the ratio of the original dimension to the downsampled dimension,
so that it is greater than one.  Note that the actual downsampling ratio can be different for each dimension.  Both
downsampling ratios must be calculated separately.  The resulting ratio is equivalent to the new sampling period,
T, discussed in Section 1.1.

The downsample filter length is a function of the downsampling ratio as mentioned in Section 1.3.  It is calculated
as the product of the downsampling ratio with the defined base length.  The base length determines the non-zero
support of the filter in terms of downsampled units.  For example, a base length of 4 always spans 4 samples in the
downsample domain regardless of the sampling ratio.  The effect of this relationship in the frequency domain is to
make the filter response much sharper as the downsampling ratio is increased.  Sharper cutoff and lower stopband
attenuation are issues that are much more critical when the desired cutoff of the lowpass filter decreases, since the
signal energy tends to be concentrated in this region.  The downsampled image is much more susceptible to
aliasing and severe distortion when the signal energy is high in the filter cutoff region.

The mechanics of the filtering are shown pictorially in Figure 12 for a single dimension.  Filtering in the other
dimension is applied similarly.  In the example presented, the sampling period is 2 (e.g. R=2 in Figures 2 and 3)
for this dimension and the base filter length is 4.  The pertinent values that need to be calculated for every output
sample include:  filter center, filter beginning, filter end, and filter coefficients.  The filter center is indicated by
the dashed line in the figure.  Its value is calculated as:

center = iTd + offset

where, i  is an integer that represents the output sample index value and has values in the range [0..downDim], and
Td is the downsampling period (Td>1).  The offset term represents a shift that is applied to the intuitive filter
center.  The shift is used in order to avoid the situation where a natural zero-crossing of the sinc function falls on a
non-zero input data sample.  The filter coefficient is zero in this situation which wastes an operation and decreases
the effective length of the filter.  The offset that was used in our experimentation is defined as:

offset = 0.5 ⋅ Td − 0.5

Note that the downsampled image will have a shift corresponding to offset/Td.  This offset is removed by the
upsampler defined in the next section.  Using a non-compliant upsampler (e.g. simple bilinear interpolation)
will result in an image that is shifted by a value equal to offset.

The filter beginning and end define where the filter is non-zero.  These values can be used to determine the
number of filter coefficients that need to be calculated, and the input data samples that fall within the filter's non-
zero support.  The beginning and end are calculated as:

begin = center − flen
2

end = center + flen
2

where, flen is the actual downsample filter length.
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The filter coefficients are calculated using the equations from Section 1.1.  The number of coefficients needed for
the current output sample is equal to the number of non-zero input data samples that fall within the non-zero
support of the filter.  It is necessary to determine the distance from a particular input data sample to the filter
center in order to calculate the appropriate filter coefficient.  This distance is labelled delta in Figure 12 as an
example.  The distance is calculated as:

delta = center − j

where, j is an integer value that represents a particular input data sample that falls within the filter's non-zero span.
In Figure 12, the input data value that represents j is sample 3.

delta

center
endbegin

Figure 12:  Pictorial view of the filtering operation.

The values for the example in Figure 12 using the equations described above are as follows:

• current output sample, i = 2
• downsample period, Td = 2
• base filter length = 4
• actual filter length, flen = 8

• filter offset, offset = 0. 5 ⋅ Td − 0. 5 = 0. 5
• filter center = 4.5
• filter beginning = 0.5
• filter end = 8.5
• delta for input sample 3, delta = 1.5
• filter coefficient corresponding to input sample 3:

coefficient = cos ( π ⋅ delta ) / flen( ) ×

sin
π

2
⋅ delta

 
 
  

 
 

π ⋅ delta
= 0. 137
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Normalization of the filter coefficients is necessary in order to avoid uneven weightings for output samples.
Normalization for this filtering operation is performed after all the filter coefficients are calculated for a single
output sample.  The values are then normalized to yield a unity gain DC frequency response using the following
equation:

hnormalized =
horiginal
horiginal∑

where, horiginal represents the unmodified filter coefficients that are calculated.  Note that this operation must be
performed separately for every output sample.

In the course of downsampling an image in either dimension, the filter will span a region that includes values
outside the input sampling grid.  Mirroring of the input data should be used to fill in the needed values.  The
mirroring point coincides with the input data sample that is exactly on the edge (e.g. first sample in a row when
padding on the left of the image).  Therefore, the edge sample is never repeated.  This is illustrated in Figure 13.

4 7 9
2 8 3

6 5 1 5 6
3 8 2 8 3
9 7 4 7 9

Mirror Point

Mirror Point

Figure 13:  Illustration of mirroring for image edges.  The bottom,
right quadrant of values represents the top, left corner of the image.

2.2 Details of the Upsampling Process

The main inputs into the upsampling module is the target dimension of the upsampled image, and the dimensions
of the original image.  A distinction is made between the two sets of dimensions for the following discussion only.
In this compression system, the two sets of dimensions are constrained to be equivalent, so that the upsample
period is equal to the inverse of the downsample period:

Tu = downDim
origDim

= 1
Td

<1

where, downDim represents the dimensions of the downsampled image, and origDim represents the dimensions of
the original image, or targeted upsampled image, since the values are equal.  Similar to the downsampling
operation, the upsampling period must be calculated separately for each dimension.
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The upsample filter length is not a function of any sampling ratio, unlike the downsample filter length.  The
upsample filter length value describes how many non-zero samples will be used in interpolation of each output
sample.  For example, a filter length of 4 will effectively use 4 non-zero samples in the calculation of each output
value.

The upsampling mechanics are similar to the downsampling process described in Section 2.1 when Td is replaced
by Tu.  The exceptions are offset and filter center calculations.  The offset in the downsampled image that must be
removed is equivalent to offset/Td as mentioned in Section 2.1.  For example, the identified offset equation given
in Section 2.1 is equal to the following in downsampled units:

offsetd = 0. 5 −
0.5
Td

= 0.5 − 0.5Tu

The latter equivalence follows from the constraint that Tu = 1/Td (e.g. The image is upsampled to the original
image dimensions).  Although this equality is forced upon these quantities, it is still possible to correctly handle
the case where Tu _ 1/Td.  For this situation, the downsampled image shift remains offset/Td, and there exists no
relationship with Tu.

The filter center calculation is modified to remove the shift in the downsampled image.  The equation for the
upsampler is as follows:

center = iTu − offsetd

Normalization of the filter coefficients and edge padding are both performed the same as in the downsampling
process.

3.0 Implementation and Testing Details

Several issues still exist in the design of this compression system.  Most of the issues will be finalized when the
trade-off between decimation and JPEG quantization is fully characterized.  One such issue is the downsample and
upsample filter lengths.  Base filter length combinations that are recommended for testing are (4,4), (4,8), and
(8,8).  Figure 10, which corresponds to the (8,4) pair, shows that significant attenuation occurs over a large range
of frequencies, similar to (4,4).  The (8,4) pair, indeed, yielded images close in quality to that of (4,4) in
experiments.  Since the  actual filter lengths that will be used in the system may be altered from these
recommended values, it will be prudent to leave them open to change.  It is not clear whether the extra complexity
of a large filter (e.g. time to encode and decode will be longer) will be desired by end-users.  There is an
observable gain in quality, however, when the reconstructed image is viewed on a high resolution monitor.
Leaving the values open to change will allow the developer to make this trade-off between complexity and quality.

The image should be processed twice in the course of downsampling (e.g. once in each dimension) as outlined in
Section 2.0.  The issue of which dimension to start with should be decided upon by weighing the software
advantages and disadvantages.  Should starting with rows first then columns have significant benefits to the
software design, then this order can be chosen.  The upsampler is defined to reverse the processing order in
Section 2.0.  Once again, this guideline can be redefined if the software can be enhanced by processing using the
other ordering.

The offset that is used to shift the filter center must also remain open to change.  The recommended value is given
in Section 2.1, but repeated here for convenience:

offset = 0.5 ⋅ Td − 0.5
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We will be looking at the implications of faster upsampling methods (e.g. bilinear interpolation) in the coming
months, since there exists dedicated hardware to accomplish this task.  The hardware will not be able to
accomodate the offset that is applied during the filtering process.  Therefore, it may be necessary to change the
offset to zero, should fast upsampling provide acceptable image quality when compared with the upsampling
method described in Section 2.2.

Another issue is that the software must be able to handle images that have bit depths ranging from 8 to 12
bits/pixel.  It is possible for the system to map downsampled images that have a bit depth lower than 12 bits/pixel
to the maximum 12-bit range that the JPEG standard allows.  However, much of the increase in precision is lost
once JPEG is applied, since the quantization for the 12-bit images will be much higher.  Therefore, we
recommended that the bit depth within the entire system remain at the native value of the input image (e.g. 8
bits/pixel should remain 8 bits/pixel after downsampling, JPEG, and upsampling).

The quantization table that was developed for testing purposes is shown in Figure 14.  This table is recommended
until optimized quantization tables are generated.  The downsampling ratios for this table at several different bit
rates are {1.5, 3.0, 6.0, 12.0, 24.0}.  The approximate bit rates that correspond to the downsampling ratios are
{1/2, 1/4, 1/8, 1/16, 1/32}.  These sampling ratios are recommended until the trade-off is further explored.
Although five low bit rate quality levels will be defined along with five sets of fixed compression parameters (e.g.
downsample ratio, quantization table, and Huffman tables), the downsampling ratio and quantization table should
still be left as open parameters.  The compression system should still be able to accept arbitrary sampling ratios
and different quantization tables.  For entropy coding in JPEG, the Quality Level 1 (Q1) Huffman table is
recommended.  This table provides adequate results for preliminary tests.

 36, 36, 37, 39, 42, 45, 50, 54
 36, 37, 39, 42, 45, 50, 54, 60
 37, 39, 42, 45, 50, 54, 60, 66
 39, 42, 45, 50, 54, 60, 66, 74
 42, 45, 50, 54, 60, 66, 74, 81
 45, 50, 54, 60, 66, 74, 81, 90
 50, 54, 60, 66, 74, 81, 90, 99
 54, 60, 66, 74, 81, 90, 99, 110

Figure 14:  JPEG quantization table for preliminary experiments.


